SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300.

نویسندگان

  • Peiye Shen
  • Xiaojun Feng
  • Xiaoying Zhang
  • Xiaoyang Huang
  • Shenglan Liu
  • Xia Lu
  • Jingyan Li
  • Jia You
  • Jing Lu
  • Zhuoming Li
  • Jiantao Ye
  • Peiqing Liu
چکیده

SIRT6 is a member of the sirtuin family of class III histone deacetylases. It plays important roles in regulating genomic stability, metabolism, stress response and aging. Our previous study has revealed that SIRT6 attenuates myocardial hypertrophy by inhibiting NF-κB activation, but the related molecular mechanisms remain to be clarified. In the present study, we showed that the p300 acetylase was involved in the protective effect of SIRT6 against phenylephrine (PE)-induced cardiomyocyte hypertrophy. In cultured neonatal rat cardiomyocytes, the expression and activity of SIRT6 declined following PE treatment, while the protein level of p300 was upregulated. PE triggered significant hypertrophic responses as manifested by increase in cellular surface area and expression of hypertrophy marker genes, which could be blocked by SIRT6 overexpression. Mechanistically, SIRT6 reduced p300 protein expression via promoting its degradation, which could be attributed to the suppression of PI3K/Akt signaling. The downregulation of p300 protein level by SIRT6 subsequently decreased the acetylation and transcriptional activity of NF-κB p65 subunit. These findings help to further understand mechanisms underlying the anti-hypertrophic role of SIRT6 and suggest the potential of SIRT6 as a therapeutic target for cardiac hypertrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein.

Cardiomyopathy is the main cause of death in Duchenne muscular dystrophy. Here, we show that oral administration of resveratrol, which leads to activation of an NAD(+)-dependent protein deacetylase SIRT1, suppresses cardiac hypertrophy and fibrosis and restores cardiac diastolic function in dystrophin-deficient mdx mice. The pro-hypertrophic co-activator p300 protein but not p300 mRNA was up-re...

متن کامل

Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy.

Cardiac hypertrophy is a major predictor of future morbidity and mortality. Recent investigation has centered around identifying the molecular signaling pathways that regulate cardiac myocyte reactivity with the goal of modulating pathologic hypertrophic programs. One potential regulator of cardiomyocyte hypertrophy is the calcium-sensitive phosphatase calcineurin. We show here that calcineurin...

متن کامل

Decreased KCNE2 Expression Participates in the Development of Cardiac Hypertrophy by Regulation of Calcineurin-NFAT (Nuclear Factor of Activated T Cells) and Mitogen-Activated Protein Kinase Pathways.

BACKGROUND KCNE2 is a promiscuous auxiliary subunit of voltage-gated cation channels. A recent work demonstrated that KCNE2 regulates L-type Ca2+ channels. Given the important roles of altered Ca2+ signaling in structural and functional remodeling in diseased hearts, this study investigated whether KCNE2 participates in the development of pathological hypertrophy. METHODS AND RESULTS We found...

متن کامل

Telmisartan suppresses cardiac hypertrophy by inhibiting cardiomyocyte apoptosis via the NFAT/ANP/BNP signaling pathway

Telmisartan, a type of angiotensin II (Ang II) receptor inhibitor, is a common agent used to treat hypertension in the clinic. Hypertension increases cardiac afterload and promotes cardiac hypertrophy. However, the ventricular Ang II receptor may be activated in the absence of hypertension. Therefore, telmisartan may reduce cardiac hypertrophy by indirectly ameliorating hypertensive symptoms an...

متن کامل

Identification of p300-targeted acetylated residues in GATA4 during hypertrophic responses in cardiac myocytes.

A zinc finger protein, GATA4, is one of the hypertrophy-responsive transcription factors and increases its DNA binding and transcriptional activities in response to hypertrophic stimuli in cardiac myocytes. Activation of GATA4 during this process is mediated, in part, through acetylation by intrinsic histone acetyltransferases such as a transcriptional coactivator p300. However, p300-targeted a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of pharmacological sciences

دوره 132 1  شماره 

صفحات  -

تاریخ انتشار 2016